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1. Introduction 

Clearly, the variance of an estimator based 
on a sample survey depends upon the design of the 
sample as well as upon the form of the estimator. 
For many of the sample designs in common use, 
estimators of the variance of estimated totals, 
means, ratios and differences are readily avail- 
able in the literature. For simple random sam- 
ples, estimators of the variance of more complex 
statistics such as variances, correlation coeffi- 
cients and regression coefficients are also read- 
ily available. Thus, the problem with which this 
session is concerned is that of estimating the 
variance of such statistics as compound ratios, 
regression coefficients, or other complicated 
fund-Lions of the sample observations, when the 
sample design is other than simple random sam- 
pling. The sample design may be multistage, the 
sampling units stratified at one or more levels, 
with probabilities of selection varying from unit 
to unit. 

For a given statistic based on a given sample 
design, there will usually exist alternative 
estimators of the variance. The proper choice 
among these alternatives will be made on the 
basis of consideration of characteristics of 
their sampling distributions, such as variance, 
mean square error or bias, as well as on the 
basis of cost considerations. 

In the simplest cases the variance of the 
statistics, for a given sample design, is a 

known function of certain population parameters. 
Those parameters may themselves be estimated from 
the sample, and the estimates substituted for the 
parameters in the variance function to obtain an 
estimate of the variance. For example, with a 
simple random sample of n units from a population 
of N units without replacement, the variance of 
the sample mean is 

(1) a2 N -n x N 1 n ' 

and the population variance may be estimated 
by 

(2) 2 

If, as in the case of this example, the variance 
function is linear in the parameters and the 
estimators of those parameters are unbiased, we 
obtain an unbiased estimator of the variance. 
If the function is rational, we obtain at least 
a consistent estimator of the variance. For ex- 
ample, for a simple random sample, the variance 
of the ratio of sample means r = ÿ/x is given 
approximately by 

(3) 
r NN -1 n +R2ax- 
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where R = Y /X, and X, Y are the expected values 
of and Si. One usually estimates by 

(4) 
2 N-n 1 2 2 2 

2(sy+r 

where s2 and are the usual estimates of 

the population variances and covariance. 

For other statistics, or for more complex 
designs, the variance may not be a known function 
of parameters that are easily estimated for sub- 
stitution into the variance formula. One may 
then estimate the variance by dividing the sample 
into random subgroups in such a way that the 
variance of the statistic, for a sample the size 
of a subgroup, can be estimated from the differ- 
ences, among subgroups, of the desired statistic. 
If the dependence of the variance on the size 
and type of the subgroup is known, this leads to 
an estimate of the desired variance. Deming [2] 

has long insisted on the utility of designing 
the sample in such a way that the computation of 
such variance estimates is particularly simple 
and easy. While this approach has much to recom- 
mend it, it is not always appropriate. 

Where it is not convenient or possible to 
divide the sample into sufficiently many random 
subgroups, the method of half -samples, termed 
"pseudo- replication" by McCarthy [8], has been 
employed by the Bureau of the Census, the Survey 
Research Center of the University of Michigan, 
and the National Center for Health Statistics 
and perhaps others. This method, which may be 
regarded as a special case of Tukey's "Jackknife" 
[9], involves defining subgroups which are half 
the size of the full sample. The subgroups are 
not independent but, properly constructed, lead 
to an estimate of the variance. 

2. Half - sample estimates of variance 

An attractive feature of the half -sample or 
pseudo -replication estimates of variance is that 
it is not necessary to know the exact functional 
form of the variance, but only the dependence of 
the variance on sample sizes. It should be noted 
that the latter cannot be taken for granted, for 
it is not always true that the variance is in- 

versely proportional to sample size, although 
that is frequently a useful approximation. 

A serious limitation to be considered is that 
the precision of the variance estimate depends 
upon the number of replications, and a sufficient 
number of replications may be quite costly. The 
Current Population Survey conducted by the Bureau 
of the Census is illustrative. 



To simplify matters somewhat, this 
description* applies to the sample design and 
estimating procedure as used before January 1967. 
The sample design is multistage. The primary 
sampling units are large, and are classified into 

357 strata, of which 112 contain only a single 
primary sampling unit. One primary unit is 
selected from each stratum with probability pro- 
portionate to its population in 1960, and a sub - 
sample of dwellings is selected in several stages 
in such a manner that the overall probability of 
selection of a dwelling is constant over the 
whole population of the United States. 

The estimation procedure can be thought of 
as consisting of two successive stages of ratio 
estimation followed by the construction of a com- 
posite estimate. The first -stage ratio estimate 
applies only to those primary units in strata 
containing more than a single primary unit, and 
consists of computing an inflation factor for 
each of 24 groups defined by geographic region, 
urban -rural residence, and race, based on the 
characteristics of the sample primary units in 
1960. The second -stage ratio estimate makes use 
of independent estimates of the current popula- 
tion by race, age, and sex to modify the infla- 
tion factors produced by the first stage. 

The composite estimate reduces the variance 
further for many statistics by taking into 
account the rotation of the sample from month to 
month. At any given time, the sample consisted 
of eight subsamples, called rotation groups, of 
about 4,000 households each. Each rotation group 
itself constitutes a national sample. The rota- 
tion of the sample is such that each rotation 
group is retained in the sample for four succes- 
sive calendar months, dropped from the sample for 
the next eight calendar months, and then included 
in the sample again for four calendar months. 
The rotation pattern is such that in any given 
month six of the rotation groups were also in the 
sample the preceding month. The composite esti- 
mate for month j is of the form 

(5) = 
+ 

where is a weight between 0 and 1, x is the 
two -stage ratio estimate of the numberjof people 
having a particular characteristic based on the 
whole sample surveyed at time j, xÌ is the same 

j 

kind of two -stage ratio estimate for month j 

based only on the six rotation groups that are in 
the sample in both months j and j -1, is 

-1 
the same kind of two -stage ratio estimate for 
month j -1 based on the same six rotation groups, 
and x" is the composite estimate obtained for 

month j -1. 

It can be seen that the nature of the 
estimator is such that a large amount of data 
needs to be available and processed for each 
replication, including data for previous months. 

* For a more complete description, see [10] 
and ]. 
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McCarthy [8] has suggested a way of 
controlling the selection of half -samples so as 
to reduce the variability of the variance estima- 
tor. He has shown that, for linear statistics 
based on a sample of L strata, half -sample selec- 
tions balanced in a certain way provide variance 
estimates as precise as if all possible 2L half - 
samples had been used. He has also suggested the 
use of partially balanced replicates. From 
results obtained by him and by Margaret Gurney 
[3], [4 ] of the Bureau of the Census, it appears 
that the variability can be reduced significantly 
by using balanced or partially balanced replicates 
rather than a purely random selection of repli- 
cates. For a sample design like the Current 
Population Survey, the reduction in variance 
seems to be of the order of 1/3 when 40 partially 
balanced replicates are used, or about 1/6 when 
20 are used. On the other hand, the variance for 

partially balanced replicates seems to be 
about twice that for a completely balanced set of 
replicates, and the variance for 20 about four 
times the variance for a completely balanced set 
(see [4]). If these degrees of variability are 
not tolerable, and if larger numbers of repli- 
cates are costly, alternative ways of estimating 
variances are attractive. 

3. Direct methods of estimating variances 

The distinction between "direct" methods of 
estimating variances and replication methods is 
not always a real one. For example, in estimat- 
ing the variance of the mean of a simple random 
sample, one may calculate the variance among the 
means of random subgroups (which may be the ele- 

mentary units themselves) and then make use of 
the fact that the desired variance is a known 
function of the expected values of the calculated 
variance. 

However, in the context of a complex sample 
design, for example a multistage sample design 
with two or more primary sampling units selected 

from each of several strata, an alternative to 
the use of pseudo -replication of half -samples is 

the following, based on an approximate lineariza- 

tion of the statistic involved. We may refer to 
equation (3), from which it is clear that 

(6) 2 N-n 1 1 
N-1 

if the variable z is defined by 

(7) z = y - Rx. 

The estimation of may well be easier and 

simpler than the estimation of a2, a2 and axy. 

This illustration is a special case of a 

long -known attack on the problem of estimating 
a variance.. The Bureau of the Census has aban- 
doned the use of half -samples for the Current 

* See for example Deming ([1], Chapter III), 
Kendall and Stuart ([6], Sec. 10.6), and 

Keyfitz [7]. 



Population Survey and is now estimating the 
variances of the quite complex composite estima- 

tor described earlier by a direct procedure. For 
estimating the variance of seasonally adjusted 
statistics, we continue to employ the replication 
estimator. 

The direct procedure essentially amounts to 
calculating a linear combination of sample totals 
for each primary sampling unit, and then estimat- 
ing the variance of the sum of those linear com- 
binations. Thus the problem has been reduced to 
the simple problem of estimating the variance of 
a total. 

The procedure may be described in the 
following way. Let u = (ul, u2, uk) be a 

vector of statistics whose expected value is a 
vector of population parameters U= 

Suppose that the population parameter of interest 
is a function f(U), and is to be estimated by 
f(u). To terms of the first degree in (ui -U.), 

the Taylor's series approximation for f(u) is 

given by 

k 
af(U) 

(8) f(u) f(U) + E (u.-U.) 
i=i 

and hence the variance and the mean square error 
of f(u) are, to this approximation, the same as 
those of the linear function 

(9) 
k 

.E(u) ui 

where the partial derivatives are to be evaluated 
at u = U. 

This "linearization" of the estimator f(u) is 

frequently useful for the estimation of the vari- 
ance of a complex estimator. The ratio estimator 
exhibited earlier is one example. A more complex 
example, the estimation of the variance of a 
regression coefficient based on a stratified 
multistage sample,can be given. 

Let 
Yhi 

denote values of the variables 

x, y associated with the i -th elementary sampling 
unit selected for the sample in stratum h. We 
consider the statistic 

xhiyhi E E Yhi) 

(10) b 
-nh i h i h i lEE 

n h i h i 

where n = E denotes the number of elementary 

units in the sample. This statistic b is some- 
times taken to estimate the regression coeffi- 
cient of y on x in thé population, and we may be 
concerned in estimating its variance. Let us 
introduce new variables by means of the notation: 
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xhiYhi 

Xhi 

Then b may be written 

(12) 

w=Ewh 
h 

u = E 
h 

h 

b 
nw - x 

nu x 
If N, W, U, X, Y denote the expectations of n, w, 

u, x, y respectively, the derivatives required 
are 

(13) 

( 2 

ab N 

NU-X2 

ab N(NW-XY) 
(NU-X2)2 

ab -NUY+2NWX-X2Y 
( NU-X2) 2 

ab X 

As before, we approximate 

(14 ) Ver(b) Var( + w + u + x + y) . 

The right -hand member may be written as a sum 
over the strata, so that 

(15)Var(b)=Varh(áÑnh + + + 

ab ab ab ab ab 
+ + + + ) 

since sampling is independent in the several 
strata. Thus the estimation of the variance of 
the estimator b has been reduced to the problem 
of estimating the variance of a linear combina- 
tion of sample sums for each stratum. 

The manner in which the variance of that 
linear combination 

(16) 
ab ab ab 

may be estimated will, of course, depend upon the 
sample design. If, for example, the sample with- 
in each stratum is a single- stage, simple random 
sample of elementary units, the sample may be 
subdivided into, say, m equal, random subgroups. 
The linear expression 



(17) 

is then formed for each of the subgroups, so that 

(18) 

and the variance estimate is based on the vari- 
ance among the 2hj. On the other hand, if two 

or more primary sampling units were selected from 
each stratum and then subsampled, a quantity 

may be formed for each primary unit and the vari- 
ance of 2h estimated from the differences among 

the in precisely the same manner as the vari- 

ance is estimated from the differences among 

the . 

One difficulty that cannot be ignored is that 
the coefficients in the linear form 2h are un- 

known population parameters. The usual practice 
is to substitute sample estimates in the expres- 
sions for the derivatives, just as in the case of 
the ratio estimates one substitutes the sample 
ratio r = y/x for the population ratio R = Y/X in 
the Taylor's approximation to the variance of r. 
For large samples, this procedure yields satis- 
factory estimates. In the case of estimating 
the variance of the regression coefficient b, one 
would take 

(19) 

. 

. 

. 

ns2 

1 

b 

ns2 

ns2 

where x/n, 9= y/n, u/n, = 

The illustration can be extended in a 
straightforward way to multiple regression coef- 
ficients. If x.. is taken to be the value of the 

1J 

i -th regressor variable for the j -th element of 
the sample, the estimates bi of the regression 

coefficients are computed as the solution of the 
system of linear equations 

p n n 
(20) E x x. b. = 

kJ 

k = 0, 1, p 

where = 1. We introduce new variables 
u.. 
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and defined by 

(21) 

n 
= E xkjxij 

j=3. 

vk = 

j=1 

The system (20) can then be written 

(22) = vk k = 0, 1, ..., p. 

Differentiation with respect to yields 

ób. 

(23) 
io 

= 

h, k, = 0, 1, p 

and differentiation with respect to vh yields 

p 
(24) 

E 
v h, k = 0, 1, p 

where Si. is the Kroneeker delta. The system 

(23) can be subdivided in (p+l)2 subsystems 
(h, = 0, 1, ..., p), each of p+l equations in 

p +1 variables i = 0, 1, ..., Actual - 

ly, only 2(p+l)(p+2) of the subsystems are dis- 
tinct because of the symmetry = ußh. The 

system (24) can be subdivided into p+1 systems 
(h = 0, 1, ..., p), each of p +l equations in p +l 

variables i = 1, ..., Thus the 

h 

determination of the coefficients of the linear 
approximations to the regression coefficients 
will require the solution of 2(p+l)(p +4) systems 
while the half -sample method using L replications 
will require the solution of L systems of the 
same size. The amount of computation depends 
then on the relative values of L and 2(p +l)(p+4). 

The limitations of this approach arise 
primarily from the use of the Taylor's series, 

for precautions must be taken to assure that the 
linear approximation is acceptably good. With 
sufficiently large sample sizes, this can usually 
be assured. An illustration is provided by the 
variance of the estimated variance for a simple 
random sample of size n. Here the statistic 
whose variance is desired is 

(25) s2 = 1 E(x.-x)2 = nll 
Exi - 

n 
1 Exi 

If we take the variables in the estimator func- 

tion f(u) to be the elementary variables xi, then 



the Taylor's series is identical with the 
function, all of whose terms are quadratic in the 
xi. Thus the linear approximation to s2 is taken 

to be zero, so that the variance is estimated to 
be zero. The difficulty here is that the Taylor 
approximation is not necessarily a good one when 
the variables in the Taylor's series are the xi, 

each of which is based on a single sample obser- 
vation. But if we define new variables u and v 
by 

(26) 
= 1E x? 

n 

v = x. 

then s2 may be written 

(27) = (u-v2) 

so that, evaluated at the expected values of u 
and v, 

(28) 

The linear form is then 

(29) @ = n (u-21v) 

whose variance is easily found to be 

(30) Var(i) 

where , denote the second and fourth moments 
2 4 

of x. The actual variance of s2 is 

(31) Var(s2) = n=3 
(n-1)2 4 n-1 

which differs only trivially from Var(i) for 
sufficiently large n. Thus the proper choice of 
the variables used in this approach can be 
important. 
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4. Precision of variance estimates 

It is easy to exaggerate the precision of 
estimates of variance for complex surveys, 
whether the variance is estimated by replication 
or by other methods, including those mentioned 
above. Discussions of the precision of the vari- 
ance estimate usually assume that the contribu- 
tions to the variance from the individual pri- 
mary strata are approximately equal. Experience 
indicates that this is far from true. In one 
example (Table 1) in which there were 120 pri- 
mary strata, a single stratum contributed 40 

percent of the total variance between primary 
sampling units. Four other strata made an addi- 
tional contribution of 21 percent. As a result 
(see Table 1), a single stratum contributed more 

than 80 percent of the variance of the estimated 
variance, and 5 of the 120 strata contributed 
about 95 percent of the total. 

Table 2 lists the contribution of the top 5 
strata to the variance between strata, the coef- 

ficient of variation of that variance estimated 
by the collapsed stratum method, and the per- 
centage contribution of the top 5 strata to the 
variance of the estimated variance, for a number 
of estimates of totals and ratios. The table 
emphasizes the marked inequality of the contri- 
butions of the individual strata. 

Tables 1 and 2 were concerned with the 
between -psu component of the variance. The dis- 

tribution of the total variance among the strata 
will be somewhat less skewed, but may still be 
quite marked. Even in the extreme case when the 
within -psu variance of an estimated total is pre- 
cisely the same for each of. L strata, it can be 
shown that the proportion of the total variance 
contributed by stratum h is 

(32) (L- )P 

where P is the ratio of the within -psu component 
of the variance to the total variance and is 

the contribution of stratum h to the between -psu 
variance. Thus, for example, if the within -psu 
component is half the total variance, a stratum 
that contributed percent of the between -psu 
variance would contribute more than 20 percent 
of the total variance. 



Table 1: PERCENTAGE CONTRIBUTIONS TO THE BETWEEN -PSU VARIANCE AND TO THE VARIANCE OF THE ESTIMATED 
VARIANCE, OF THE ESTIMATED NET INCREASE OF THE U.S. POPULATION FROM MIGRATION, 1955 -1960. 

Variance of Variance of Variance of 
Stratum Variance estimated Stratum Variance estimated Stratum Variance estimated 

%) variance ( %) variance (5) variance 

(%) (9') 

1 o 0 41 .260 .010 81 .003 .000 

2 .367 .002 .210 .152 82 .004 .000 

3 .881 .012 43 o 83 .805 .130 
4 .496 .014 .051 .000 84 .38o .007 
5 .424 .009 45 .151 .002 85 .087 .000 

6 .161 .003 46 o o 86 .025 .000 

7 .014 .000 47 .214 .002 87 .051 .000 

8 .002 .000 48 .002 .000 88 .000 .000 

9 .325 .001 49 .059 .000 89 .116 .003 
10 .402 .003 50 .714 .018 90 .003 .000 

11 .215 .000 51 .150 .001 91 o o 
12 .001 .000 52 .025 .000 92 0 
13 .029 .000 53 .742 .032 93 .369 .003 

14 .581 .043 54 .267 .001 94 o o 
15 .001 .000 55 .013 .000 95 .006 .000 
16 .177 .000 56 .406 .001 96 1.586 1.755 
17 .052 .000 57 38.986 81.883 97 .063 .001 
18 .781 .011 58 o o 98 .280 .008 

19 .336 .002 59 .011 .000 99 .001 .000 

20 .225 .000 6o .004 .000 .274 .007 

21 .114 .000 61 .002 .000 loi o o 

22 .014 .000 62 .376 .048 102 2.427 .808 

23 .000 .000 63 .004 .000 103 2.476 .268 

24 .040 .000 64 o 104 .332 .002 

25 .181 .001 65 o o 105 .441 .004 

26 .092 .000 66 o o 106 .573 .004 

27 3.155 .423 67 .009 .000 107 2.303 .123 

28 .643 .008 68 o o 108 1.598 .108 

29 .021 .000 69 o o 109 2.495 .144 

30 .298 .003 7o o o 110 .063 .000 

31 .004 .000 71 .o54 .000 111 1.624 .109 

32 .245 .006 72 .702 .037 112 .772 .060 

33 .056 .000 73 .050 .000 113 1.203 .030 
34 .005 .000 74 .908 .089 114 .997 2.018 

35 1.147 .510 75 .005 .000 115 5.731 3.563 
36 .012 .000 76 .004 .000 116 .047 .000 

37 .56o .023 77 .024 .000 117 .334 .011 

38 .138 .002 78 .005 .000 118 .105 .005 

39 .002 .000 79 5.160 1.519 119 .764 .104 

4o .155 .028 8o 6.882 5.665 120 2.860 .162 

Each "stratum" listed above consists of a pair or a triple of non -certainty strata of the Census Bureau's 
Current Population Survey as used in 1966. All but 5 of the 120 groups are pairs. The estimated vari- 
ance employs the collapsed group method as described in [5], Vol. I, Chapter 9, Sections 15 and 28. 
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Table 2: CONCENTRATION OF THE BETWEEN -PSU VARIANCE AND OF THE VARIANCE OF THE ESTIMATED VARIANCE, FOR 
SPECIFIED STATISTICS. 

[The entries in columns (1) and (3) are the proportions (of the variances and of the variance 
of the estimated variance, respectively) contributed by the 5 "strata" that are the largest 
contributors in each case. For the definition of a "stratum" see footnote to Table 1.] 

Concentration of 
Statistic 

variance 

(1) 

Coefficient of 
variation of 

estimated variance 
(2) 

Concentration of 
variance of 

estimated variance 

(3) 

Estimates of totals: 

Total population, 1960 .38 .41 

Rural -farm population, 1960 .37 .16 .40 

Non -white population, 1960 .37 .23 .74 

Live births, 1960 .31 .27 .75 
Marriages, 1960 .78 1.87 .997 
Number of families, 1960 .39 .36 .86 

Families with 1959 income less than 

$3,000 .29 .15 .43 
Aggregate income in 1959 .39 .29 .82 

Elementary school enrollment, 1960 .31 .28 .77 
High school enrollment, 1960 .29 .26 .75 
Net gain through migration, 1950 -1960. .60 .66 .95 

Civilian labor force, 1960 ..31 .31 .86 

Unemployed persons, 1960 .28 .21 .63 

Employed persons, 1960 .31 .31 .87 

Employed in agriculture, 1960 .38 .16 .65 

Employed in manufacturing, 1960 .18 .15 .38 
Employed in wholesale or retail trade, 
1960 .28 .19 .62 

Housing units, 1960 .41 .35 .78 
Vacant housing units, 1960 .68 .65 .97 
Bank deposits, 1960 .31 .30 .84 

Taxable payroll, January - March, 1959 .68 4.33 1.00 
Value added by manufacture, 1958 .24 .14 .41 

Retail sales, 1958 .23 .23 .61 

Retail sales, 1954 .24 .30 .85 

Wholesale sales, 1958 .46 .34 .92 

Estimates of ratios to total 
population: 

Rural -farm population, 1960 .36 .15 .60 

Non -white population, 1960 .39 .23 .74 
Live births, 1960 .22 .21 .57 

Marriages, 1960 .78 1.89 .997 

Families with 1959 income less than 
$3,000 .26 .15 .46 

Aggregate income in 1959 .44 .22 .85 

Elementary school enrollment, 1960 .22 .21 .76 

High school enrollment, 1960 .21 .22 .70 

Net gain through migration, 1950 -1960. .62 .68 .95 

Civilian labor force, 1960 .29 .29 .84 

Unemployed persons, 1960 .24 .20 .64 

Employed persons, 1960 .20 .22 .65 
Employed in manufacturing, 1960 .19 .14 .42 

Employed in durable goods 
manufacturing, 1960 .26 .17 .54 

Employed in wholesale or retail 
trade, 1960 .39 .42 .91 

Housing units, 1960 .47 .48 .91 

Vacant housing units, 1960 .69 .66 .97 
Bank deposits, 1960 .26 .32 .82 

Taxable payroll, January- March, 1959 .71 4.52 1.00 
Value added by manufacture, 1958 .24 .14 .36 

Retail sales, 1958 .19 .34 .85 
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Table 2: CONCENTRATION OF THE BETWEEN -PSU VARIANCE AND OF THE VARIANCE OF THE ESTIMATED VARIANCE, FOR 
SPECIFIED STATISTICS - continued. 

[The entries in columns (1) and (3) are the proportions (of the variances and of the variance 
of the estimated variance, respectively) contributed by the 5 "strata" that are the largest 
contributors in each case. For the definition of a "stratum" see footnote to Table 1.] 

Statistic 
Concentration of 

variance 

(1) 

Coefficient of 
variation of 

estimated variance 

(2) 

Concentration of 
variance of 

estimated variance 

(3) 

Estimates of ratios to total 
population continued: 

Retail sales, 1954 .24 .39 .89 
Wholesale sales, 1958 .43 .32 .90 

Estimates of other ratios: 

Employed in agriculture /total 
employed, 1960 .37 .16 

Employed in durable goods /total in 
manufacturing, 1960 .17 .15 .39 

Vacant /total housing units, 1960 .7o .66 .97 
Retail sales, 1958/1954 .47 .35 .81 
Wholesale sales, 1959/1958 .44 .34 .94 
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